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Abstract—The worst situation in computing the solution X of It is well known that the UME (1) is strictly related to

a matrix equation F(X) =0 a.rising in Markov models is'the the matrix polynomialp()\) = foo A;\'. More precisely,
close-to-null-recurrent case, which occurs when the derivative of the eigenvalues of any solutioki cﬁ (1) are a subset of the

F at X is near to a singular matrix. When the derivative of F' at ts of th tri I iab(\) | th uti f th
X is singular (null recurrent case), the problem is ill-conditioned roots of the matrix polynomiap(}), i.e., the solutions of the

and the convergence of the algorithms based on matrix iterations Scalar equationlet(p(\)) = 0, say A1, ..., Axn, Where some
is slow; however, there exist some techniques to remove theof the \;'s are set tooo if det(p(\)) has degree lower than
singularity and restore well-conditioning and fast convergence. [y, Moreover, there is a one-to-one correspondence between
This phenomenon is partially shown also in the close-to-null- g4 1igns of (1) and sets of linearly independent Jordan chains

recurrent case, but the techniques used for the null recurrent .
case cannot be applied to this setting. of p(A) (see [4]). In theM /G /1 queueing model the roots

Two methods to accelerate the convergence and amend theCan be ordered by increasing modulus such that
conditioning in close-to-null-recurrent cases for certain matrix
equations are presented. The numerical experiments confirm the  [Aof < -+ < [An1] < An < T < A1 < [Apga <7
efficiency of the new methods. 3)

Index Terms—nonsymmetric algebraic Riccati equation, uni- that is, there are: roots inside the closed unit disk and the
lateral quadratic matrix equation, shift technique, close-to-null- others are outside, and tigentral eigenvalugs\,, and A
recurrent case, Mobius transform " . . " ntls
are real [2]. We are interested in computing the solution whose
I. INTRODUCTION eigenvalues have minimum modulus, which turns out to be the

In certain Markov models the computation of the stationarrninimal element-wise nonnegative solution.
P Y Similarly, the solutions of the NARE (2) are strictly related

probability is reduced to the solution of a nonlinear matri%< : . :
: . . . 0 the invariant subspaces of the matrix
equation. For instance, the computation of the stationary
probability of a M/G/1 queue with a finite number of states is I— D -C 4
reduced to the solution of a Unilateral Matrix Equation (UME) T |B Al “)
the columns oV = ! span an invariant subspacegf in

k
> AX =0, (1)
i=0 X

where, settingB; = A; + I and B; = A, for i # 1, one has particular HW = W (D — CX). In this case, the eigenvalues
that B; € C™*™ have nonnegative elements a@f:o B; is of D—CX are a subset of the eigenvaluesif In the fluid
a stochastic matrix, in particular fdr = 2 one has a QBD queueing models the eigenvalues can be ordered by decreasing
model (see [1], [2]). real part such that

Another important example arises in the study of flui
gueues where the equation to be solved is a Nonsymme

Algebraic Riccati Equation (NARE) that is,n eigenvalues belong to the closed left half plane and
XCX —AX — XD+ B =0, ) the others to the closed right half plane, and ¢batral eigen-
values \,, and A1, are real and separated from the other
where X, B € C™*", A € C"™*™, C € C™*™ D € C"*", eigenvalues. We are interested in computing the solution such
and that the eigenvalues dd — C'X are the leftmost eigenvalues
M= [ D O] of H. This solution turns out to be the minimal element-wise
—B 4 nonnegative solution (see [5]).
is either a nonsingular or a singular irreducible M-matrix (see Equations (1) and (2) are usually solved by some matrix iter-
[3]). ation, e.g., the Logarithmic Reduction (LR) [2], the Cyclic Re-
The solutions of these equations can be put in correspatuction (CR) [6] or the Structure-preserving Doubling Algo-
dence with the invariant subspaces of some matrix polynomigthm (SDA) [7], [8], whose limit yields the required solution.

More precisely, a matriXX is a solution of (2) if and only if

%8)\1 = >Re)\n71 >)\n 202 )\n+1 > >Re)\m+na



Both the conditioning of the equations and the convergenceThe Mobius transformM vyields a mapM\ from P, to
speed of the algorithms are strictly related to the gap betweBp: let ¢(z) be a matrix polynomial of degreé, then
the central eigenvalues defined @, = (A, /Anr1| <1for  M(p(z)) = (62 — B)"p(M~'(z)). This function is well
(1) — or for the associated matrix polynomjal\) — and as defined sinceM (kp(z)) = kM (o (2)).
gapy = A\n — An41 foOr equation (2) — or for the matrixs. Observe that
If gap, = 1 — that is, in probabilistic terms, in the
null recurrent case — then the minimal nonnegative solution /\7(14 — M) = (6A— D) (A — M—l()\)])
of equation (1) is ill-conditioned and the convergence of_ _ _ _ T
iterations such as CR and SDA, which is quadratic in the (Y +0A)A = (al + fA) = (M(A) = Al)(=~1 = 0A).
generic case, turns to linear; the same happens to (2) ifThe following result shows how the solutions of a UME
gapy = 0. We speak of critical case, since in these casehange under a bbius transform applied to the corresponding
the required solution is critical. In such critical cases thgatrix polynomial.
shift technique of [8], [9] restores quadratic convergence and X , —
reduces the ill-conditioning. Theorem 1. Letp(A) = 3 io Aid" and g(A) = M(p(})) =
However, ill-conditioning and slow convergence appear alsai—o BiA"- If > A;X* =0, and —y/4 is not an eigenvalue
in the near-critical case, that is, in the close-to-null-recurrefif X, then}_ B, M(X)" = 0.
case (weakly transient or weakly positive recurrent), or, in p.oor  Opserve that a0 = Zf:o BN =

terms of the eigenvalqes_, whgqpp ~1 (.gapH.;t: 0). This is _ I-C:o A;(M=L(N))(6A — B)F and thUSZ]-CZO BM(X) =
the worst-case scenario in matrix equations since the numeriggi! . i el
solution of the matrix equations is problematic and the shi%:ii—o AiX ) (OM(X) —BI)" = 0. Since/3/4 cannot be an
technique cannot be used. eigenvalue ofM (X), the matrix(M(X) — BI) is invertible

In this paper we present two techniques to handle tR@d the proof is completed. u
near-critical case. The first technique is applied to (1) when b) QBD models: Now let us consider for simplicity
many eigenvalues are near toand is based on the dbius the case which models QBD queues, in which the matrix
transform of the complex plane and aims to increase tp@lynomial has degree 2. Lgt(\) := AN* + BA + C be
gap. The second technique is applied to (2) when the centfafiuadratic matrix polynomial whose ordered eigenvahiges
eigenvalues are well separated from the others and is based 1....,2n, verify (3) and at least one between, and
on the computation of the invariant subspace correspondinghe+1 is different from one (noncritical case).
both central eigenvalues and the accurate computation of theifFor eactd < a < 1, there exists a unique @bius transform
eigenvectors in this small subspace. M(z) which fixes the unit circle, for which the unit disk is

) invariant and such that1(a) = 0, that is
Il. MOBIUS TRANSFORMS APPLIED TO MATRIX . a

POLYNOMIALS AND MATRICES M(z) = T (6)

a) Analysis: We want to describe how to apply a linear
rational function, also called bbius transform, to the UME On one hand, the functiooV(z) moves the points in a
and how this can be used for computing the minimal solutioR€ighborhood of the poirt far from the circle. On the other
Define the Mbbius transform of parameters 3, ands hand,M(z) moves the points in a neighborhood of the point

— where we assume thaty — 3y # 0 — as —1 near to the circle. This can be used to let the gap of a
guadratic matrix polynomial increase, when there are some
M:C—-C, z— ot 6’2. (5) roots near tol and no roots near te-1, which is a typical
Y+ 0z situation in applications.
a—yz If |]An—1| < A,, and the eigenvalues outside the unit disk are

For z # —/6, M is invertible andM ™ (z) = 62— 8 not too near to the unit circle, then there exists < a < 1

If a square matrix// has no eigenvalue equal toy/d, such that applying\(2) to p()) yields a new quadratic matrix
then the Mbbius transform off is M(H) = (al+BH)(yI+ polynomialg(\) := M(p()\)) such that
SH)~!. The eigenvalues of (H) are the images of the eigen-
values of H under the Mbius transform, thus no eigenvalue gap, > gap,,
of M(H) can bes/é. In the case of matrix polynomials the
transform is more complicated.

Define P, as the quotient space of matrix polynomials
degree at most modulo the following relationa(z),b(z) € . ) . .
P, are equivalent ifa(z) — 7b(z), for a nonzero constant. It is easy to derive an expression for the polyno_r?léﬂom
This is a meaningful setting since we are interested in the ro(tj?i%olynomlalp for =1 <a <1. Observe thaiM™(t) =
and the Jordan chains of a matrix polynomial, which do nm, SO
change up to a multiplication of the polynomial by a nonzero
constant. q(\) = (14+2a)’*p(M (V) = (14+2a)?*p(A+a)/(1+Xa));

where ¢ can be relatively large ifA;,...,\,_1 are well
0feparated in modulus fromy,, or all the roots ofp(A) have
nonnegative real part.



. _ 2 _ 2
1 Setdy = A+aB+a°C, By = 2aA+(a® —1)B =240,  35ume that all the other eigenvalugsi & {n,n+ 1} satisfy

Co=a’A+aB +C, By = By; [IA:]l > |Re(A;)| > 6. A real-life example of this setting is the
2: repeat {CR ste@_l structured NARE appearing in transport theory [11], [12].
3 App1 = —ArBy Akl L Let v; (resp.u;) be the right (resp. left) eigenvector associ-
4 Bryy =By — ApBy Cr = Cp By Ay ated with);. Let V Ry (resp.URy) be a thin QR factorization
5 Cry1=—CiB, Cy (see [13, Chapther 5]) of thgx +m) x 2 matrix [v,  vy11]
6:  Bry1 = By — ApB; ' Cy (resp.[un un+1]) With diag(Ry) > 0 (diag(Ry) > 0), such
7ountil [[Ap | <e_ ~ as the one produced by the Modified Gram-Schmidt algorithm
8: RecoverX ~ —(By, — aCy)~}(Cy — aBy). [13, Algorithm 5.2.5].

Let M = VTHV, andH = H + sVMU” for a suitable
real values > 0 (the “shift”). Let (A, %n), (Any1,Zny1) bE
5 gap a | CRits, res Algorithm 1 its, re$ the two eigenpairs o/ THV = VTHV + sMUTV. Direct

Fig. 1. Algorithm 1: Solution of a near-critical UME

10-2 0970 05 | 11.8.4e16 9. 516416 computations usinglet(Ry) > 0,det(Ry) > 0 show that
1073 0.997 0.5 | 14, 7.5-16 12, 8.5€-16 det(VTHV) < 0, thus we may suppose that, > 0 and
107*  0.999 0.5 | 17, 4.3e-16 15, 7.8e-16 Ant1 < 0.

Fio 2. Number of iterati d relat dual for Algorithm 1 vs. CR Let for brevity bev; := Vz; for i € {n,n +1}. Then, one
o réndol:11mQ(I33rDo terations and refative residual for Algontm = V8- “Rean see that the eigenpairsBfare (\;,v;) for i € {n,n+1},

plus (Ai, v;) for i & {n,n-+1}. Similarly, the left eigenvectors
of H areu! = ylUT, i € {n,n + 1}, where they! are
after some simple manipulations one has the left eigenvectors o/ T HU + sUTV M, plus all the left
¢(A) = (A + aB + >C)A2 eigenvalues:{ of H, wherei ¢ {n,n + 1}.
) 9 When s is large enough),, and A, are larger thary,
+(20A+ (1 +a")B+2a0)A+a”A+aB+C. (7)) therefore the gap of the NARE associated withis 26; i.e.,

Any numerical algorithm like SDA or CR can be used afteihis NARE is not near-critical. N

the Mobius transform. At the end, the solution of the original _€) Solution form: From the minimal solutionX' to the

equation can be recovered. For the CR, one has AlgorithmNARE associated with//, we may compute the minimal
Using this technique to reduce the gap of a quadratic UME@Iution X' to the original critical NARE.

and then get a new equation with better conditioning hastheorem 2. Let X be the minimal solution of the NARE
drawback: since the solution of the well-conditioned trangwsociated with, and X the solution of the NARE associated

formed equation is\1(.X), in order to recoveX from M(X), with H. Using the notation of the previous paragraphs, we
it is necessary to perform an inverséMus transform which payve

may be very ill-conditioned. Fortunately, in some algorithms, X =X +r(Avy — XAv)ul W, (8)
like CR, there is no need to compute!(X) but the original
solution can be obtained by a different, numerically stablefith o N .
formula (see line 8 of Algorithm 1). W = [)?} , T= (1 + ESWAM) ;

The cost per step of Algorithm 1 is the same as the cus-
tomary CR while the number of steps needed for convergengere Av := v,, — v,, = [Av{ AvT
in the practical examples is reduced. o~ ]

c) Computational results:We tested Algorithm 1 on Proof: The columns of the matri¥V" form a basis of

a QBD described in [10] wherel, M,C, are nonnegative the stable space off, i.e., span(vy, ..., v,); what we need
matrices of size32 such thatA + M + C is stochastic and 0 build instead is a basis of the stable spacefnfi.e.,
B = M —1I. The gap depends on the paramétessed in [10]. SPan(vi, .-, “n;h?’n)- Each columr; of X can be written
We measured the residual of the computed solution and #&¢i = ;- ;v + a\5,. The left eigenvectori”
number of CR iterations needed to giety1||; <e=10"'2 of H is such thatulv;, = 0 for k¥ = 1,...,n — 1 and
for certain values of. The results are reported in Figure 2. %%, = 1 (up to normalization), thereforélc; = o' so

~T ~ N _\\" () . .
l1l. A SHIFT TECHNIQUE FOR THE NONSINGULAR CASE ~ Ci T (“n]fg(”" —Un) =)y @; ;IS a vector in the stable
space ofH.

d) Analysis: In its original formulation [8], the shift " |; follows that the matrix
technique for (2) relies on the fact thatis an eigenvalue N e
of both M and H; thus it can be applied only to critical W+ (Av)u, W
problems. In the near-critical case, we have instead two smiglla matrix whose columns lie in the stable spacéfof_et us
eigenvalues on the two sides of the imaginary axis. We shallppose that its first block is nonsingular, so that it is indeed a
describe a modification of the shift technique to compute thigsis. In order to compute the solution to the original equation
minimal solution to a NARE (2) in which the criticality is X, we must invert the first block of this matrix, i.e.,
due only to a pair of eigenvalues very close to zero, which _ — N\ —1
give rise to a very smalgap; = e. In this case, we can X = (X+AU277£W) <I+AU117£W>

"



1: Compute orthonormal basdg V' for the invariant sub- c a SDA its | Algorithm 2 its
spaces corresponding t9,, A,+1, using an orthogonal ~ 32 1 _-10—2 10-9 14 11
subspace iteration off ~! 32 1-10"% 1078 18 11

2: ComputeH = H + s(VVTHVUT) 32 1-10"12 1012 26 11

3: Solve the NARE associated witH, using SDA. 128 1—-10"3 10—3 16 13

4: Computet,,, v,, v, by solving the two2 x 2 eigenprob- 128 1-—10"6 108 20 13

lemsVTHV, UTHU andVTHV. Fig. 4
5: Recover the solution to the original NARE from the proplem

Number of iterations for Algorithm 2 vs. SDA on the transport

solution X using (8)

Fig. 3. Algorithm 2: solution of a near-critical NARE

g) Computational results:We tested Algorithm 2 on

near-critical cases of the transport problem treated in [12],

We may find an explicit form for the inverse using th
Sherman-Morrison formula; after some algebraic manipul
tions we obtain (8).

Therefore Algorithm 2 computes the solution to a near:
critical NARE. Since the NARE associated with is far from
critical, we may expect that the number of SDA iterations
needed in the solution of its associated NARE is lower tha
the number of iterations needed in the solution of the original
NARE. The cost of the SDA in Step 3 is the dominant cost
of the algorithm, since a step of subspace iteration costd!
O((n+m)?) arithmetic operations, and due to our assumptions
on the localization of the central eigenvalues its convergence
speed is controlled by /6)* [13, Theorem 7.3.1]. S

f) Accuracy: Another crucial aspect of near-critical prob-
lems is the accuracy with which we can compute the solutior4]
It is known [14] that the solution of a critical problem cannot
be computed with better accuracy th@{,/u), whereu is  [5]
the machine precision, while the solution of a non-critical one
can be computed with precisio@(u). It is therefore to be 4
expected that the constant hidden in the latr) notation
degrades as the problem approaches criticality. Where is this
degradation to be expected in the above Algorithm 2?

Let us assume as a test case to have a perturbation of (2)
such that\,,, A\,,.1 — 0, while all the other eigenvalues satisfy [8]
|A;| > 4. In this case, the computation of the orthogonal bases
U andV stays tame, since the number of needed iterations [g]
bounded. The NARE associated witth is far from critical,
assuming a value sufficiently large is chosen, in order toj;
have\,,, \,11 > §. Thus the only parts of the computation in
which the ill-conditioning is reflected are the last two steps. As
a result, in (8) the ill-conditioning appears only in the secorfy’!
summand. This allows more accurate computation of products
in the form Xv, wherev is a vector such that the second!?]
summand is very small. This is in contrast with the traditional
algorithms, in which the solution is computed as a wholg,3]
and thus it is impossible to identify and compute the well-
conditioned component ok along the subspaces orthogonqlm]
to the correction term.

In the case of a more general perturbation, the analysis is
much more complicated, due to the fact thap, alone is
not a good measure of the ill-conditioning of the problem, and

more sophisticate notions of distance between subspaces are

needed [13], [15].

éll]. We measured the number of SDA iterations needed to
get the relative residual below= 10~'2, for several matrix
Sizesm = n and choices of the parameterse. We recall
that the problem is critical fofc, «) = (1,0). The results are
reported in Figure 4.
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