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Abstract—The worst situation in computing the solution X of
a matrix equation F (X) = 0 arising in Markov models is the
close-to-null-recurrent case, which occurs when the derivative of
F at X is near to a singular matrix. When the derivative of F at
X is singular (null recurrent case), the problem is ill-conditioned
and the convergence of the algorithms based on matrix iterations
is slow; however, there exist some techniques to remove the
singularity and restore well-conditioning and fast convergence.
This phenomenon is partially shown also in the close-to-null-
recurrent case, but the techniques used for the null recurrent
case cannot be applied to this setting.

Two methods to accelerate the convergence and amend the
conditioning in close-to-null-recurrent cases for certain matrix
equations are presented. The numerical experiments confirm the
efficiency of the new methods.

Index Terms—nonsymmetric algebraic Riccati equation, uni-
lateral quadratic matrix equation, shift technique, close-to-null-
recurrent case, Möbius transform

I. I NTRODUCTION

In certain Markov models the computation of the stationary
probability is reduced to the solution of a nonlinear matrix
equation. For instance, the computation of the stationary
probability of a M/G/1 queue with a finite number of states is
reduced to the solution of a Unilateral Matrix Equation (UME)

k∑
i=0

AiX
i = 0, (1)

where, settingB1 = A1 + I andBi = Ai for i 6= 1, one has
that Bi ∈ Cn×n have nonnegative elements and

∑k
i=0 Bi is

a stochastic matrix, in particular fork = 2 one has a QBD
model (see [1], [2]).

Another important example arises in the study of fluid
queues where the equation to be solved is a Nonsymmetric
Algebraic Riccati Equation (NARE)

XCX −AX −XD + B = 0, (2)

whereX, B ∈ Cm×n, A ∈ Cm×m, C ∈ Cn×m D ∈ Cn×n,
and

M =
[

D −C
−B A

]
is either a nonsingular or a singular irreducible M-matrix (see
[3]).

The solutions of these equations can be put in correspon-
dence with the invariant subspaces of some matrix polynomial.

It is well known that the UME (1) is strictly related to
the matrix polynomialp(λ) =

∑k
i=0 Aiλ

i. More precisely,
the eigenvalues of any solutionX of (1) are a subset of the
roots of the matrix polynomialp(λ), i.e., the solutions of the
scalar equationdet(p(λ)) = 0, sayλ1, . . . , λkn, where some
of the λi’s are set to∞ if det(p(λ)) has degree lower than
kn. Moreover, there is a one-to-one correspondence between
solutions of (1) and sets of linearly independent Jordan chains
of p(λ) (see [4]). In theM/G/1 queueing model the roots
can be ordered by increasing modulus such that

|λ0| 6 · · · 6 |λn−1| 6 λn 6 1 6 λn+1 6 |λn+2| 6 · · · ,
(3)

that is, there aren roots inside the closed unit disk and the
others are outside, and thecentral eigenvalues, λn andλn+1,
are real [2]. We are interested in computing the solution whose
eigenvalues have minimum modulus, which turns out to be the
minimal element-wise nonnegative solution.

Similarly, the solutions of the NARE (2) are strictly related
to the invariant subspaces of the matrix

H =
[
D −C
B −A

]
. (4)

More precisely, a matrixX is a solution of (2) if and only if

the columns ofW =
[

I
X

]
span an invariant subspace ofH, in

particularHW = W (D −CX). In this case, the eigenvalues
of D−CX are a subset of the eigenvalues ofH. In the fluid
queueing models the eigenvalues can be ordered by decreasing
real part such that

Reλ1 > · · · > Reλn−1 > λn > 0 > λn+1 > · · · > Reλm+n,

that is,n eigenvalues belong to the closed left half plane and
the others to the closed right half plane, and thecentral eigen-
values, λn and λn+1, are real and separated from the other
eigenvalues. We are interested in computing the solution such
that the eigenvalues ofD − CX are the leftmost eigenvalues
of H. This solution turns out to be the minimal element-wise
nonnegative solution (see [5]).

Equations (1) and (2) are usually solved by some matrix iter-
ation, e.g., the Logarithmic Reduction (LR) [2], the Cyclic Re-
duction (CR) [6] or the Structure-preserving Doubling Algo-
rithm (SDA) [7], [8], whose limit yields the required solution.



Both the conditioning of the equations and the convergence
speed of the algorithms are strictly related to the gap between
the central eigenvalues defined asgapp = |λn/λn+1| 6 1 for
(1) — or for the associated matrix polynomialp(λ) — and as
gapH = λn − λn+1 for equation (2) — or for the matrixH.

If gapp = 1 — that is, in probabilistic terms, in the
null recurrent case — then the minimal nonnegative solution
of equation (1) is ill-conditioned and the convergence of
iterations such as CR and SDA, which is quadratic in the
generic case, turns to linear; the same happens to (2) if
gapH = 0. We speak of critical case, since in these cases
the required solution is critical. In such critical cases the
shift technique of [8], [9] restores quadratic convergence and
reduces the ill-conditioning.

However, ill-conditioning and slow convergence appear also
in the near-critical case, that is, in the close-to-null-recurrent
case (weakly transient or weakly positive recurrent), or, in
terms of the eigenvalues, whengapp ≈ 1 (gapH ≈ 0). This is
the worst-case scenario in matrix equations since the numerical
solution of the matrix equations is problematic and the shift
technique cannot be used.

In this paper we present two techniques to handle the
near-critical case. The first technique is applied to (1) when
many eigenvalues are near to1 and is based on the M̈obius
transform of the complex plane and aims to increase the
gap. The second technique is applied to (2) when the central
eigenvalues are well separated from the others and is based
on the computation of the invariant subspace corresponding to
both central eigenvalues and the accurate computation of their
eigenvectors in this small subspace.

II. M ÖBIUS TRANSFORMS APPLIED TO MATRIX

POLYNOMIALS AND MATRICES

a) Analysis: We want to describe how to apply a linear
rational function, also called M̈obius transform, to the UME
and how this can be used for computing the minimal solution.

Define the M̈obius transform of parametersα, β, γ and δ
— where we assume thatαδ − βγ 6= 0 — as

M : C → C, z → α + βz

γ + δz
. (5)

For z 6= −γ/δ, M is invertible andM−1(z) =
α− γz

δz − β
.

If a square matrixH has no eigenvalue equal to−γ/δ,
then the M̈obius transform ofH isM(H) = (αI+βH)(γI+
δH)−1. The eigenvalues ofM(H) are the images of the eigen-
values ofH under the M̈obius transform, thus no eigenvalue
of M(H) can beβ/δ. In the case of matrix polynomials the
transform is more complicated.

DefinePk as the quotient space of matrix polynomials of
degree at mostk modulo the following relation:a(z), b(z) ∈
Pk are equivalent ifa(z) = τb(z), for a nonzero constantτ .
This is a meaningful setting since we are interested in the roots
and the Jordan chains of a matrix polynomial, which do not
change up to a multiplication of the polynomial by a nonzero
constant.

The Möbius transformM yields a mapM̂ from Pk to
Pk: let ϕ(z) be a matrix polynomial of degreek, then
M̂(ϕ(z)) = (δz − β)kϕ(M−1(z)). This function is well
defined sinceM̂(kϕ(z)) = kM̂(ϕ(z)).

Observe that

M̂(A− λI) = (δλ− β)
(
A−M−1(λ)I

)
= (γI + δA)λ− (αI + βA) = (M(A)− λI)(−γI − δA).

The following result shows how the solutions of a UME
change under a M̈obius transform applied to the corresponding
matrix polynomial.

Theorem 1. Let p(λ) =
∑k

i=0 Aiλ
i and q(λ) = M̂(p(λ)) =∑k

i=0 Biλ
i. If

∑
AiX

i = 0, and−γ/δ is not an eigenvalue
of X, then

∑
BiM(X)i = 0.

Proof: Observe that q(λ) =
∑k

i=0 Biλ
i =∑k

i=0 Ai(M−1(λ))i(δλ − β)k and thus
∑k

i=0 BiM(X)i =(∑k
i=0 AiX

i
)

(δM(X)−βI)k = 0. Sinceβ/δ cannot be an

eigenvalue ofM(X), the matrix(M(X) − βI) is invertible
and the proof is completed.

b) QBD models: Now let us consider for simplicity
the case which models QBD queues, in which the matrix
polynomial has degree 2. Letp(λ) := Aλ2 + Bλ + C be
a quadratic matrix polynomial whose ordered eigenvaluesλi,
i = 1, . . . , 2n, verify (3) and at least one betweenλn and
λn+1 is different from one (noncritical case).

For each0 < a < 1, there exists a unique M̈obius transform
M(z) which fixes the unit circle, for which the unit disk is
invariant and such thatM(a) = 0, that is

M(z) =
z − a

1− az
. (6)

On one hand, the functionM(z) moves the points in a
neighborhood of the point1 far from the circle. On the other
hand,M(z) moves the points in a neighborhood of the point
−1 near to the circle. This can be used to let the gap of a
quadratic matrix polynomial increase, when there are some
roots near to1 and no roots near to−1, which is a typical
situation in applications.

If |λn−1| < λn and the eigenvalues outside the unit disk are
not too near to the unit circle, then there exists−1 < a < 1
such that applyingM(z) to p(λ) yields a new quadratic matrix
polynomialq(λ) := M̂(p(λ)) such that

gapq > gapp,

where a can be relatively large ifλ1, . . . , λn−1 are well
separated in modulus fromλn or all the roots ofp(λ) have
nonnegative real part.

It is easy to derive an expression for the polynomialq from
the polynomialp for −1 < a < 1. Observe thatM−1(t) =
t + a

1 + ta
, so

q(λ) = (1+λa)2p(M−1(λ)) = (1+λa)2p((λ+a)/(1+λa));



1: SetA0 = A+ aB + a2C, B0 = 2aA+(a2− 1)B− 2aC,
C0 = a2A + aB + C, B̂0 = B0;

2: repeat {CR step}
3: Ak+1 = −AkB−1

k Ak

4: Bk+1 = Bk −AkB−1
k Ck − CkB−1

k Ak

5: Ck+1 = −CkB−1
k Ck

6: B̂k+1 = B̂k −AkB−1
k Ck

7: until ‖Ak+1‖ 6 ε
8: RecoverX ≈ −(B̂k − aC0)−1(C0 − aB̂k).

Fig. 1. Algorithm 1: Solution of a near-critical UME

δ gap a CR its, res Algorithm 1 its, res
10−2 0.970 0.5 11, 8.4e-16 9, 5.1e-16
10−3 0.997 0.5 14, 7.5e-16 12, 8.5e-16
10−4 0.999 0.5 17, 4.3e-16 15, 7.8e-16

Fig. 2. Number of iterations and relative residual for Algorithm 1 vs. CR
on a random QBD

after some simple manipulations one has

q(λ) = (A + aB + a2C)λ2

+ (2aA + (1 + a2)B + 2aC)λ + a2A + aB + C. (7)

Any numerical algorithm like SDA or CR can be used after
the Möbius transform. At the end, the solution of the original
equation can be recovered. For the CR, one has Algorithm 1.

Using this technique to reduce the gap of a quadratic UME
and then get a new equation with better conditioning has a
drawback: since the solution of the well-conditioned trans-
formed equation isM(X), in order to recoverX fromM(X),
it is necessary to perform an inverse Möbius transform which
may be very ill-conditioned. Fortunately, in some algorithms,
like CR, there is no need to computeM(X) but the original
solution can be obtained by a different, numerically stabler,
formula (see line 8 of Algorithm 1).

The cost per step of Algorithm 1 is the same as the cus-
tomary CR while the number of steps needed for convergence
in the practical examples is reduced.

c) Computational results:We tested Algorithm 1 on
a QBD described in [10] whereA,M,C, are nonnegative
matrices of size32 such thatA + M + C is stochastic and
B = M−I. The gap depends on the parameterδ used in [10].
We measured the residual of the computed solution and the
number of CR iterations needed to get‖Ak+1‖1 6 ε = 10−12

for certain values ofδ. The results are reported in Figure 2.

III. A SHIFT TECHNIQUE FOR THE NONSINGULAR CASE

d) Analysis: In its original formulation [8], the shift
technique for (2) relies on the fact that0 is an eigenvalue
of both M and H; thus it can be applied only to critical
problems. In the near-critical case, we have instead two small
eigenvalues on the two sides of the imaginary axis. We shall
describe a modification of the shift technique to compute the
minimal solution to a NARE (2) in which the criticality is
due only to a pair of eigenvalues very close to zero, which
give rise to a very smallgapH = ε. In this case, we can

assume that all the other eigenvaluesλi, i 6∈ {n, n+1} satisfy
‖λi‖ ≥ |Re(λi)| ≥ δ. A real-life example of this setting is the
structured NARE appearing in transport theory [11], [12].

Let vi (resp.ui) be the right (resp. left) eigenvector associ-
ated withλi. Let V RV (resp.URU ) be a thin QR factorization
(see [13, Chapther 5]) of the(n + m)× 2 matrix

[
vn vn+1

]
(resp.

[
un un+1

]
) with diag(RV ) ≥ 0 (diag(RU ) ≥ 0), such

as the one produced by the Modified Gram-Schmidt algorithm
[13, Algorithm 5.2.5].

Let M = V T HV , and H̃ = H + sV MUT for a suitable
real values > 0 (the “shift”). Let (λ̃n, x̃n), (λ̃n+1, x̃n+1) be
the two eigenpairs ofV T H̃V = V T HV + sMUT V . Direct
computations usingdet(RU ) > 0,det(RV ) > 0 show that
det(V T H̃V ) ≤ 0, thus we may suppose that̃λn ≥ 0 and
λ̃n+1 ≤ 0.

Let for brevity beṽi := V x̃i for i ∈ {n, n + 1}. Then, one
can see that the eigenpairs ofH̃ are(λ̃i, ṽi) for i ∈ {n, n+1},
plus (λi, vi) for i 6∈ {n, n+1}. Similarly, the left eigenvectors
of H̃ are ũT

i = ỹT
i UT , i ∈ {n, n + 1}, where theyT

i are
the left eigenvectors ofUT H̃U + sUT V M , plus all the left
eigenvaluesuT

i of H, wherei 6∈ {n, n + 1}.
When s is large enough,̃λn and λ̃n+1 are larger thanδ,

therefore the gap of the NARE associated withH̃ is 2δ; i.e.,
this NARE is not near-critical.

e) Solution form:From the minimal solutionX̃ to the
NARE associated withH̃, we may compute the minimal
solutionX to the original critical NARE.

Theorem 2. Let X be the minimal solution of the NARE
associated withH, andX̃ the solution of the NARE associated
with H̃. Using the notation of the previous paragraphs, we
have

X = X̃ + r(∆v2 − X̃∆v1)ũT
nW̃ , (8)

with

W̃ =
[

I

X̃

]
, r =

(
1 + ũT

nW̃∆v1

)−1

,

where∆v := vn − ṽn =
[
∆vT

1 ∆vT
2

]T
.

Proof: The columns of the matrix̃W form a basis of
the stable space of̃H, i.e., span(v1, . . . , ṽn); what we need
to build instead is a basis of the stable space ofH, i.e.,
span(v1, . . . , vn−1, vn). Each columnci of X̂ can be written
as ci =

∑n−1
j=1 α

(i)
j vj + α

(i)
n ṽn. The left eigenvector̃uT

n

of H̃ is such thatũT
nvk = 0 for k = 1, . . . , n − 1 and

ũT
n ṽn = 1 (up to normalization), thereforẽuT

n ci = α
(i)
n . So

ci + (ũT
n ci)(vn − ṽn) =

∑n
j=1 α

(i)
j vj is a vector in the stable

space ofH.
It follows that the matrix

W̃ + (∆v)ũT
nW̃

is a matrix whose columns lie in the stable space ofH. Let us
suppose that its first block is nonsingular, so that it is indeed a
basis. In order to compute the solution to the original equation
X, we must invert the first block of this matrix, i.e.,

X =
(
X̃ + ∆v2ũ

T
nW̃

) (
I + ∆v1ũ

T
nW̃

)−1



1: Compute orthonormal basesU, V for the invariant sub-
spaces corresponding toλn, λn+1, using an orthogonal
subspace iteration onH−1

2: ComputeH̃ = H + s(V V T HV UT )
3: Solve the NARE associated with̃H, using SDA.
4: Computeũn, vn, ṽn by solving the two2× 2 eigenprob-

lemsV T H̃V , UT H̃U andV T HV .
5: Recover the solution to the original NAREX from the

solution X̃ using (8)

Fig. 3. Algorithm 2: solution of a near-critical NARE

We may find an explicit form for the inverse using the
Sherman-Morrison formula; after some algebraic manipula-
tions we obtain (8).

Therefore Algorithm 2 computes the solution to a near-
critical NARE. Since the NARE associated with̃H is far from
critical, we may expect that the number of SDA iterations
needed in the solution of its associated NARE is lower than
the number of iterations needed in the solution of the original
NARE. The cost of the SDA in Step 3 is the dominant cost
of the algorithm, since a step of subspace iteration costs
O((n+m)2) arithmetic operations, and due to our assumptions
on the localization of the central eigenvalues its convergence
speed is controlled by(ε/δ)k [13, Theorem 7.3.1].

f) Accuracy: Another crucial aspect of near-critical prob-
lems is the accuracy with which we can compute the solution.
It is known [14] that the solution of a critical problem cannot
be computed with better accuracy thanO(

√
u), whereu is

the machine precision, while the solution of a non-critical one
can be computed with precisionO(u). It is therefore to be
expected that the constant hidden in the latterO(·) notation
degrades as the problem approaches criticality. Where is this
degradation to be expected in the above Algorithm 2?

Let us assume as a test case to have a perturbation of (2)
such thatλn, λn+1 → 0, while all the other eigenvalues satisfy
|λi| ≥ δ. In this case, the computation of the orthogonal bases
U andV stays tame, since the number of needed iterations is
bounded. The NARE associated with̃H is far from critical,
assuming a values sufficiently large is chosen, in order to
haveλ̃n, λ̃n+1 > δ. Thus the only parts of the computation in
which the ill-conditioning is reflected are the last two steps. As
a result, in (8) the ill-conditioning appears only in the second
summand. This allows more accurate computation of products
in the form Xv, where v is a vector such that the second
summand is very small. This is in contrast with the traditional
algorithms, in which the solution is computed as a whole,
and thus it is impossible to identify and compute the well-
conditioned component ofX along the subspaces orthogonal
to the correction term.

In the case of a more general perturbation, the analysis is
much more complicated, due to the fact thatgapH alone is
not a good measure of the ill-conditioning of the problem, and
more sophisticate notions of distance between subspaces are
needed [13], [15].

n c α SDA its Algorithm 2 its
32 1− 10−3 10−3 14 11
32 1− 10−6 10−8 18 11
32 1− 10−12 10−12 26 11
128 1− 10−3 10−3 16 13
128 1− 10−6 10−8 20 13

Fig. 4. Number of iterations for Algorithm 2 vs. SDA on the transport
problem

g) Computational results:We tested Algorithm 2 on
near-critical cases of the transport problem treated in [12],
[11]. We measured the number of SDA iterations needed to
get the relative residual belowε = 10−12, for several matrix
sizesm = n and choices of the parametersc, α. We recall
that the problem is critical for(c, α) = (1, 0). The results are
reported in Figure 4.
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